HEAT EXCHANGE IN A BED OF DISPERSED
MATERIAL DURING RADIAL FILTRATION
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We formulate and solve a problem in heat exchange during radial filtration of a heat-transfer
agent through a bed of dispersed material. Results of a numerical solution of the problem
are represented in the form of reference graphs.

In various branches of the national economy, wide use is made of cylindrical heat exchangers, in
which a dispersed material located between two perforated concentric cylinders is blown past a heat~
transfer agent in a radial direction (with variable velocity in a fixed bed).

The known solutions of A. Antselius and T. Shuman refer to the case of motion of a heat-transfer
agent with constant velocity along the bed thickness of the material, and they are not suitable for calcu-
lating heat exchange in apparatus with radial filtration of the heat-transfer agent. In view of the fact that
for a number of materials the intensity of heat exchange is directly proportional to the flow rate of the
heat-transfer agent [1, 2], it is possible to solve the heat-exchange problem for radial filtration of a bed
of dispersed material. We consider two variants of motion of the heat-transfer agent in the bed: from the
center to the periphery and from the periphery to the center.

To simplify the solution of the problem we make the following assumptions: a) the physical proper-
ties of the material and of the heat-transfer agent are constant during heat exchange; b) the temperature
gradient within individual particles is negligibly small; c¢) the quantity of heat transmitted between parti-
cles of the material by means of heat conduction is so small in comparision with the quantity of heat that
the particles exchange with the flowing heat-transfer agent that it can be neglected; d) the coefficient of
heat exchange depends linearly on the velocity of the heat-transfer agent in the bed of material,

Taking account of the symmetry of the gas flow and the assumptions that have been made, the system
of differential equations of the process has the form
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The problem of heat exchange for radial filtration reduces to finding in the zone ry S r S ry; 0< 1
- % the solution of system (1) for the conditions
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System (1) is reduced to canonical form by means of the following substitution of variables:

*The upper sign corresponds to motion of the air from the center to the periphery, and the lower sign
corresponds to motion from the periphery to the center.
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Fig. 1. Contour for calculating
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The problem with given values of the functions on the char-
acteristics (the Goursat problem) was solved by using the method
of integral Laplace transformations.

After transforming (2) and (3) according to the variable ¢ and after denoting
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where 6* and t* are Laplace transforms of the functions ¢* and t*; p is a complex variable. The solu-
tion of system (4) for the conditions (5) gives the following dependences for the functions t* and 6*:
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According to the transformation equation, the unknown functions t* and 6* are determined from the equa-
tions
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The integrands in (8) and (9) have the following singularities: the first-order pole p = 0 and the
branch points p = —1/n and p = —1/7,. On the basis of a known assumption of the theory of functions of
a complex variable, that the values of the integral J £(z)dz taken between the points z; and z, along the
contours L, and L, are equal.if we can convert from I, to L, owing to the continuous deformation, without
intersecting a single singularity, the path of integration (y ~— i=, y +i«) in this case can be replaced by
the contour (y — i, A, B, A; C, B, C, v +i») (Fig, 1). Taking into account that the integral taken
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Fig. 2. Graphs for calculating the temperature of the ma-
terial for motion of a heat-transfer agent from the center
to the periphery (a) and from the periphery to the center
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along the contour (y — i, A, B, C, v +1i=) equals zero [3], to obtain real integrals we c¢an use the rec-
tangular contour {« +ih, —b +ih, —b — ih, @ — ih), which is obtained as a result of the deformation of

the contour ABC.

As a result of calculating the integrals along this contour, according to (8) and (9), we obtain the fol-
lowing. expressions for the temperature of the material and of the heat-transfer agent for radial filtration:
temperature of the heat-transfer agent
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Based on Eq. (11), using a program for calculating integrals of rapidly oscillating functions on an
M-200 computer, we calculate the quantities 6* for two variants of motion of air in the bed (Fig. 2). The .

limits of variation of the parameters are 1 = 16-48; & = 0-1800.

Analysis of the calculated data shows that radial filtration of a heat-transfer agent in a bed of dis-

persed material is characterized by a variable heat-exchange zone.

For motion of the heat-transfer

agent from the center to the periphery, the heat-exchange zone decreases in time, and for the opposite
motion it increases. The graphs presented can be used for designing radial heat exchangers with a fixed
bed of dispersed material and for estimating the efficiency of operating apparatuses of similar construc-

tion.

NOTATION

6, t are the temperatures of the material and of the heat-transfer agent;

T is the time;
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are the temperature of the heat-transfer agent at the bed inlet and the initial temperature of
the material;

are the radial coordinate along the bed thickness and the radii of cylinders corresponding to
the bed inlet and the heat-transfer-agent outlet from the bed of material;

is the inlet velocity of the heat-transfer agent;

are the volumetric specific heat of the bed material and of the heat-transfer agent;

is the coefficient of proportionality between the volumetric heat-transfer coefficient and the
velocity of the heat-transfer agent;

is the coefficient of porosity.

LITERATURE CITED

A. F. Chudnovskii, in: Heat Exchange in Dispersed Media {in Russian], GTTL, Moscow (1954).
G. D. Rabinovich, Inzh.~Fiz. Zh., Nos. 4 and 11 {1960),

A. M. Efros and A. M. Danilevskii, Operational Calculus and Contour Integrals [in Russian],

Gosudarstvennoe Nauchno-Tekhunicheskoe Izdatel'stvo Ukrainy, Khar'kov (1937).



